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Boundary Layer Region: Initial Results .
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We present initial results on the modeling of the circulation of plasmaspheric-
origin plasma into the outer magnetosphere and low-latitude boundary layer
(LLBL), using a dynamic global core plasma model (DGCPM). The DGCPM
includes the influences of spatially and temporally varying convection and
refilling processes to calculate the equatorial core plasma density distribution
throughout the magnetosphere. We have developed an initial description of the
electric and magnetic field structures in the outer magnetosphere region. The
purpose of this paper is to examine both the losses of plasmaspheric-origin plasma
into the magnetopause boundary layer and the convection of this plasma that
remains trapped on closed magnetic field lines. For the LLBL electric and
magnetic structures we have adopted here, the plasmaspheric plasma reaching the
outer magnetosphere is diverted anti-sunward primarily along the dusk flank.
These plasmas reach X= -15 Rg in the LLBL approximately 3.2 hours after the
initial enhancement of convection and continues to populate the LLBL for 12
hours as the convection electric field diminishes.
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1. INTRODUCTION

Convection of cold plasma through the inner
magnetosphere can be broadly divided into two different
flow regimes by the separatrix between open and closed
drift paths. Flux tubes on closed drift paths convect
eastward with the earth filling to high (~10° cm™) densities
[e.g., Nishida, 1966]. Flux tubes on open drift paths
convect sunward from the tail region, filling to
comparatively lower densities (~1-10 cm?’), before being
lost to the outer magnetosphere. During large-scale
convection enhancements, the separatrix between open and
closed drift paths penetrates closer to the earth.
Plasmaspheric flux tubes on previously closed drift paths
may now be located outside the separatrix and convect
sunward on open drift paths into the outer magnetosphere
creating a plasmaspheric tail {Chen and Wolf, 1972} or
possibly a ‘detached’ plasma region [Chappell, 1974].



Freeman et al. [1977] were probably the firsts to suggest
that detached plasmaspheric clouds (e.g., Chappell, 1974]
could circulate from the dusk bulge region during large-
scale storm-time convection gust into the outer
magnetosphere, magnetosheath, and low-latitude boundary
layer (LLBL) regions. Their scenario further proposed that
such plasmas would be energized, and convect into the tail
region, so that the plasmasphere could thus be a viable
source of energetic magnetospheric plasmas.

There have been several observations for which spacecraft
crossed the magnetopause and enhanced density regions
were observed next to and just inside the initial
magnetopause crossing and in between successive multiple
crossings for a single pass [Chappell, 1974]. Adjacent
observations of plasmaspheric plasmas and magnetopause
crossings have also been reported from geosynchronous
orbit during times of high magnetospheric activity [Elphic et
al, 1996]. The presence of He" in the magnetospheric
boundary layers can perhaps be used to identify the loss of
plasmaspheric plasma out of the magnetosphere, since He*
is a significant component of plasmaspheric plasma
[Horwitz et al., 1984]. Observations from ISEE 1 have
shown He" densities near the subsolar magnetopause of 0.2
cm?, He* densities inside the magnetopause of 0.8 cm™, and
significant He® concentrations for two cases in the
magnetosheath layer outside the magnetopause [Peterson et
al., 1982]. Observations from AMPTE showed cold He*
ions at densities in the range 0.1-0.8 cm™ convecting into
the subsolar low latitude boundary layer where it was
evidently heated and accelerated to energies of a few keV
[Fuselier et al., 1989]. Observations on PROGNQOZ-7 have
shown cases where the cold plasma component was
frequently found to dominate the local magnetospheric
plasma density in the dayside boundary layer indicated by a
high percentage of He” ions [Lundin et al., 1985]. This cold
plasma component may have the largest influence on the
flow of momentum across the boundary layer [Lundin et al.,
1985; Lundin et al., 1984].

Here we seek to explore quantitatively the circulation of
plasmaspheric plasma into the outer magnetosphere and
boundary layer regions using a dynamic global core plasma
model (DGCPM) [Ober et al., 1997; Ober et al., 1995]. We
present the results for a sequence in which the large-scale
convection increases following a magnetically quiet period.
First, we will discuss the formulation of the model magnetic
and electric field structures in the outer magnetosphere
regions used in the DGCPM, and then the implications of
our model results will be discussed.

2. MODEL DESCRIPTION

The electric field structure used here for the DGCPM
derives from a time-dependent ionospheric two-cell electric
potential model [Sojka et al., 1986] which is mapped along
assumed equipotential magnetic field lines given by the
Tsyganenko-89 model (Kp=0) [Tsyganenko, 1989]. These



magnetospheric electric and magnetic field structures are
used to calculate the ExB drift of approximately 140,000
convecting cold plasma flux tubes. The plasma density is
assumed uniform along a flux tube and the content of a tube
is controlled by ionospheric refilling and tube volume
variations during convection. The total ion content of a
magnetic flux tube evolves in time as

DN Fy+F;
Dt B.

where D/Dt is the convective derivative in the moving frame
of the flux tube, N is the total ion content per unit magnetic
flux, Fy and Fs are the ionospheric fluxes in or out of the
tube at the northern and southern ionospheres, and B; is the
magnetic field in the ionosphere at the foot point of the flux
tube [Rasmussen, 1993; Chen and Wolf, 1972]. The net
flux of particles into the flux tube on the dayside is

where Fp (=Fx+Fs) is the dayside ionospheric flux, ngy is the
saturation density of plasma in the flux tube, n is the density
of plasma in the flux tube, and Fgy (=2.9-10°
particles/cm?/sec) is the limiting flux of particles from the
ionospheres [Rasmussen, 1992; Chen and Wolf, 1972]. The
saturation density is approximated from the empirical model
of Carpenter and Anderson [1992]. The nightside flux is
approximated as exponential drainage of the flux tube
content into the nightside ionosphere.

Observations of the LLBL from IMP 6 indicate that the
bulk flow always has an anti-sunward component, that the
LLBL is at times on closed field lines, and that the thickness
appears to increase with increasing longitudinal distance
from the subsolar point [Eastman et al., 1979]. Flow speeds
are largest close to the magnetopause [Sckopke et al., 1981].
We can achieve these characteristics for our model LLBL
by allowing closed magnetic field lines in the outer
magnetospheric flanks and subsolar region to map into the
ionosphere around the polar cap boundary and flow reversal
region. Magnetic field lines in the LLBL are expected to
have significant field aligned potential drops. Here the
electric potential is mapped assuming equipotential field
lines. The effects of field aligned potential drops on the
structure of the electric field in the LLBL will be considered
in future work. Figure 1 shows the model electric potential
pattern in the ionosphere for a total polar cap potential drop
of 72 kV. The shaded region in Figure 1 shows
approximately the area in our model ionosphere that maps to
the outer magnetosphere and LLBL regions. The LLBL
flow velocities in our model are on the order of 0-300
km/sec while the magnetospheric flow velocities in the
outer magnetosphere tend to be in the range of 0-60 km/sec
[e.g., Eastman et al., 1979]. Figure 2 shows the electric



potential pattern in the equatorial magnetosphere mapped
from the tonosphere for a total polar cap potential drop of 72
kV. The dashed line shows the inner boundary of the
LLBL. Within the model LLBL, the cold plasma flow is
away from the subsolar point and anti-sunward along the
flanks. The total potential drop across our model LLBL
shown in Figure 2, at MLT = 15, is 26 kV which is slightly
larger than what has been observed [e.g., Hapgood and
Lockwood, 1993; Mozer, 1984]). The width of the model
LLBL increases with increasing anti-sunward distance.

For the preliminary investigation here, the ionospheric
electric potential changes in time but not the magnetic field
structure. The location of the inner boundary of the LLBL
is determined by the mapping of the ionospheric electric
potential pattern and changes as the electric potential
evolves in time. The location of the magnetopause is
determined by the transition from closed to open magnetic
field lines in the magnetic field model and does not change
in time. Therefore, the width of the LLBL may become
unrealistically large (2.6 Rg at 15 MLT) at times in the
simulation but we anticipate that the physics of the model
still remains useful to beginning to understand the flow of
plasmaspheric plasma into the outer magnetosphere and
boundary layer regions.

For the simulation presented here we -consider a case in
which the total polar cap potential drop increases suddenly
and then decays. Figure 3 shows the total polar cap
potential drop, the total potential drop across the LLBL and
the width of the LLBL at MLLT=15, all as a function of time,
The polar cap potential shown in Figure 3 rises suddenly
during the first 6 hours of the simulation.

3. RESULTS

The simulation shown here will illustrate the convection
of bulge region plasmaspheric plasma into the dayside
magnetopause boundary layer. Initially, the simulation is
ran with a constant potential pattern until a self-consistent
steady state density distribution is established that is
consistent with observations of a quiet time plasmasphere.

Plate 1 shows the initial (0 hours) density distribution in
the magnetosphere prior to the sudden rise of the total polar
cap potential. At 3 hours in the simulation plasmaspheric
flux tubes convecting sunward into the outer magnetosphere
reach the dayside magnetopause and are diverted towards
the dusk flank of the magnetosphere. At 3.2 hours into the
simulation, anti-sunward streaming flux tubes of
plasmaspheric origin in the LLBL reach x = -15 Rg. Shown
here is the continued transport of plasmaspheric origin
plasma in the LLBL at 5 hours into the simulation. At 15
hours the sunward transport of plasmaspheric flux tubes has
diminished and at 21 hours the plasmasphere has returned to
a near quiet time configuration except that the plasmapause
has shifted earthward.

In our model simulation the cold plasma densities in the
LLBL were in the range of 1-10 cm™. Using a He'/H" ratio



of 0.2 that is typical of the plasmasphere [Horwitz et al.,
1984}, our model would predict a He* density in the LLBL
of 0.2-2 cm™. This is in the range of observed He* densities
in the LLBL [e.g. Peterson et al., 1982; Fuselier et al,
1989].

4. CONCLUSION

In our model simulation it was observed that
plasmaspheric flux tubes convect sunward from the dusk
bulge region during a large-scale convection enhancement
and are diverted along the dusk flank in the LLBL when
reaching the outer magnetosphere. Plasmaspheric flux tubes
convecting in the LLBL region require about 20 minutes to
reach X= -15 Rg. Transport of plasmaspheric origin flux
tubes into the dusk flank LLBL continues for about 12 hours
until the outer plasmasphere has become depleted. The
modeled He* densities in the LLBL are around 0.2-2 cm”
that is in the range of observed values of total densities
appropriate to He* in the LLBL. In our simulation we have
only considered the convection of plasma that remains on
closed field lines. Flux tubes in the outer plasmasphere may
also convect out to the magnetopause, reconnect with the
IMF, and convect over the polar cap [Elphic et al., 1997;
Freeman et al., 1977].
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Figure 1. Electric potential pattern in the ionosphere for a total
polar cap potential of 72 kV. The shaded region shows the
approximate area that maps to the outer magnetosphere and LLBL
regions.

Figure 1. "Electric potential pattern in the ionosphere for a total polar cap potential of 72 kV. The shaded region shows
the approximate area that maps to the outer magnetosphere and LLBL regions.

Figure 2. Electric potential pattern in the equatorial
magnetosphere for a total polar cap potential of 72 kV. The
dashed line shows the inner boundary of the LLBL.

Figure 2. Electric potential pattern in the equatorial magnetosphere for a total polar cap potential of 72 kV. The
dashed line shows the inner boundary of the LLBL.

Figure 3. Plotted are the total polar cap potential drop, the total
potential drop across the LLBL and the width of the LLBL, both at
MLT=15, used in the model simulation.

Figure 3. Plotted are the total polar cap potential drop, the total potential drop across the LLBL and the width of the
LLBL, both at MLT=13, used in the model simulation.

Plate 1. Modeled cold plasma density distribution in the

equatorial magnetosphere at 0, 3, 5, and 21 hours during the

simulation. The white line marks the location of the inner edge of

the low-latitude boundary layer. The axis are geocentric in units of

Rg. Color bar shows density color scale used.

Plate 1. Modeled cold plasma density distribution in the equatorial magnetosphere at 0, 3, 5, and 21 hours during the

simulation. The white line marks the location of the inner edge of the low-latitude boundary layer. The axis are
geocentric in units of Rg. Color bar shows density color scale used.
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